Electrically Conductive, Hydrophilic Porous Membrane for Fuel Cell Applications, Phase I

Completed Technology Project (2011 - 2011)

Project Introduction

This Phase I effort seeks to produce a conductive polyethersulfone (PES) microporous membrane for fuel cell water management applications. This membrane will facilitate gas/liquid separations in regenerative fuel cells (RFC). The preferred novel approach will impart electrical conductivity to the PES itself; previous attempts at similar membrane development have only focused on applying a conductive layer to the surface of the PES membrane. This type of porous, conductive membrane would lead to improved water management for fuel cell and electrolyzer systems, and could significantly improve the performance of NASA's RFC. Such an improvement in performance could facilitate the design of smaller, lighter weight RFC systems for renewable energy storage for space applications. This project will result in the novel development of a conductive microporous membrane for NASA fuel cells and electrolyzers, and will also provide better understanding of the preparation and design of conductive membranes for other applications.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Giner, Inc.	Lead Organization	Industry	Newton, Massachusetts
Jet Propulsion Laboratory(JPL)	Supporting Organization	NASA Center	Pasadena, California

Electrically Conductive, Hydrophilic Porous Membrane for Fuel Cell Applications, Phase I

Table of Contents

Primary U.S. Work Locations		
and Key Partners	1	
Project Transitions 2	2	
Organizational Responsibility 2	2	
Project Management		
Technology Maturity (TRL)	2	
Technology Areas	3	
Target Destinations		

Small Business Innovation Research/Small Business Tech Transfer

Electrically Conductive, Hydrophilic Porous Membrane for Fuel Cell Applications, Phase I

Completed Technology Project (2011 - 2011)

Primary U.S. Work Locations		
California	Massachusetts	

Project Transitions

0

February 2011: Project Start

(

September 2011: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138118)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Giner, Inc.

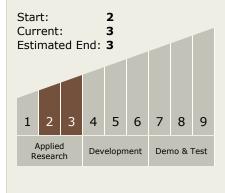
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Jason Willey

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Electrically Conductive, Hydrophilic Porous Membrane for Fuel Cell Applications, Phase I

Completed Technology Project (2011 - 2011)

Technology Areas

Primary:

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

